
The Design and Implementation of a Bare PC Email Server 

George H. Ford, Jr., Ramesh K. Karne, Alexander L. Wijesinha, and Patrick Appiah-Kubi 
Department of Computer and Information Sciences 

Towson University 
Towson, Maryland, USA 

gford3@students.towson.edu, rkarne@towson.edu, awijesinha@towson.edu, pappia1@students.towson.edu 
 
 
 

Abstract— This paper presents the architecture, design and 
implementation of an email server that runs on a bare PC 
without an operating system or hard-disk. In addition to 
providing standard services offered by conventional email 
servers, the bare PC email server incorporates several unique 
features leveraging the absence of an operating system. For 
example, it implements novel algorithms for optimal multi-
tasking, provides streamlined processing of messages enabling 
highly efficient integration of the SMTP and POP3 servers, 
and minimizes traditional software and protocol overhead. 
Additionally, it eliminates process overhead due to an 
operating system, offers enhanced security since the server is 
not vulnerable to attacks that target operating system flaws, 
and has a smaller code size. The complete server can be booted 
from removable media such as a USB drive. The bare PC email 
server demonstrates the ability of a self-contained, self-
executing, complex software application to directly control the 
underlying PC hardware. 

Keywords- Bare Machine Computing (BMC), Application 
Object, Email Server, SMTP/POP3, Intertwining Protocols 

I. INTRODUCTION 
Conventional email servers are supported by an 

operating system (OS). They are unable to fully exploit the 
capabilities of the underlying hardware due to the OS, 
which acts as an intermediary. For example, an email server 
running on an OS-based system has increased overhead due 
to resource management, and complex concurrency control 
and task scheduling mechanisms.  Moreover, it is difficult to 
minimize protocol overhead using an OS-based socket 
interface for communication with email clients and servers. 
Conventional email servers are also vulnerable to security 
holes in the OS. We describe a novel email server that 
executes on a bare machine without any OS. In Bare 
Machine Computing (BMC), an application object (AO) [8], 
executes directly on an Intel IA-32 based PC or device. An 
AO consists of the application program and all the necessary 
code to boot, load, and execute it, including direct interfaces 
to the hardware. Thus, the design and implementation of 
BMC applications in the form of self-contained and self-
executable AOs is quite different from that of conventional 
OS-based or embedded system applications. Writing such 
applications presents a variety of software challenges, since 
there is no commercially available infrastructure for the 
development and deployment of such applications. 

The focus of this paper is the architectural approach, 
design, and implementation of an SMTP-POP3 email server 
that executes on a bare machine.  Like conventional email 
servers, the server can receive email, deliver email to valid 
local users, use SMTP relay forwarding to send email to the 
recipient’s mail exchange domain for delivery by another 
email server, and interoperate with a variety of popular 
email clients and servers. In addition, the BMC email server 
architecture incorporates several novel features: 1) the 
ability to boot, load, and execute a complete email server 
application contained on a USB device; 2) management of 
persistent data storage on a USB device; 3) direct 
communication with a NIC; 4) a novel approach to optimal 
BMC-based multi-threaded task control; 5) support for 
multiple concurrent client sessions serviced on state-based, 
per-request transactions without interruption; 6) 
minimization of software and protocol overhead by 
streamlined processing of TCP and SMTP/POP3 messages 
and intertwined protocol implementation; 7) efficient 
integration of SMTP and POP3 server operations and SMTP 
relay forwarding within a single application; 8) enhanced 
security due to immunity against attacks targeting OS flaws; 
and,  9) smaller code size. 

The remainder of this paper describes related work in 
section II, the architectural approach in section III, software 
design in section IV, software implementation in section V, 
and functional and operational testing in section VI. 

 

II. RELATED WORK 
Many attempts have been made to eliminate OS 

abstractions, or provide a lean OS environment [1, 2, 11, 
and 13]. In [12], Linux is used to enable direct 
communication with the hardware. More recently, 
sandboxing techniques on the x86 systems [3] have 
extended OS kernels allowing applications to run guest 
plug-ins on the host OS.  

Prior research related to email server architectures has 
focused on OS-based threading features.  Threaded 
communications and processes can provide many 
advantages in terms of security and concurrent operations 
for users.  However, many of the existing email server 
designs are lacking in some security-related features, such 
as spam and security awareness [10].  Other areas of prior 

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.70

480



research in email server architectures have included design 
focus on issues associated with scalability and dependability 
[5].  

The BMC approach to developing applications is derived 
from dispersed operating system computing [6], and the AO 
concept. In the process of developing various AOs, 
techniques were devised to directly communicate with the 
hardware [7]. Other current BMC networking applications 
include a Web Server [4] and a VoIP softphone [9]. 

 

III. ARCHITECTURE 
The BMC email server has been architected to include 

the necessary software structures to perform the server’s 
intended functions. The server architecture is supported by 
common general-purpose hardware including USB-based 
bootable devices, network interface cards, USB-based 
persistent storage, and an Intel IA-32 based PC. The 
architecture uses BMC-based process threading techniques, 
circular lists, and stack mechanisms to provide efficient 
memory utilization and process control. 

However, the architecture does not make use of any 
components of an OS.  Likewise, the compilation and 
execution of the BMC application object for the email 
server does not make use of any system or API libraries of 
the compiler which would require an OS. The BMC 
approach only uses BIOS function calls to invoke the timer 
and read device addresses from the Intel Hub Controller. All 
other interrupts are managed by the Application Object as 
software interrupts. 

A. Description 
Fig. 1 shows the architecture of a BMC email server. For 

ease of reference, numeric labels are assigned to items 
within the figure. The server is initiated on a bare machine 
by a boot program (1) which is read from a USB-bootable 
device. The initial sector contains a bootstrap loader which 
loads the menu program (2), which in turn loads the AO. 
The AO starts by initializing various data structures, 
parameters, tasks, and objects. Control then passes to the 
Main Task (3). The basic BMC data structures used by the 
Main Task include a Circular Task List (12) and a 
Multiplexor mechanism (13) that switches between 
Received Tasks (18) and Circular List Tasks (SMTPS, 
POP3S, and SMTPC) and selects a running task (4). A TCP 
Table (TCB, 15) is used to store relevant information 
derived from the headers of TCP, IP and Ethernet messages 
(19). To communicate directly with the host Network 
Interface Card (NIC, 16), a BMC NIC driver was written 
(17). To perform the functionality of a POP3-SMTP email 
server, there are three components within the overall email 
server BMC Application. This includes an SMTP Server 
Object (5) to receive emails from clients, a POP3 Server 
Object (6) to deliver resident emails for local users’ clients, 
and an SMTP Client (7) within the email server for SMTP 

Relay Forwarding when sending email to recipients in other 
email domains.    

At initialization, a task pool of SMTP Server (8), POP3 
Server (9), and SMTP Client (10) objects are created along 
with their associated TCB table entries for use by the server 
application. When one of these objects is in use to service a 
client-server connection, a reference to it is placed within 
the Circular Task List (12), and an active status flag is set 
within its associated TCB entry. The TCB entry contains all 
of the unique data attributes associated with the object, and 
its executable state information.  When the task pooled 
object is inactive, the reference to the object is removed 
from the Circular Task list and pushed back onto its 
associated task pool’s Task Stack (11). The active flag in the 
associated TCB entry along with associated data fields are 
then reset. 

 

 
 

Figure 1.  Email Server Architecture 

481



B. Novel Features 
The BMC email server provides multi-threaded task 

control that does not use message-based communications for 
inter-process communications as is done in many OS thread 
implementations. The server uses a simple optimal task 
scheduling algorithm that ensures the efficient processing of 
received and transmitted messages.  The Main Task keeps a 
reference to active objects within the Circular List, which 
maintains information about their objects’ data references 
within the TCB table entries for the object.   

The BMC email server approach supports multiple 
concurrent client session connections. It achieves this by 
keeping track of the IP address and port number used for a 
client during session establishment.  In case a client 
connection is lost or a connection remains idle for a 
specified time, the connection can timeout and the 
associated BMC email server objects are freed for some 
other subsequent client connection.  An example of client-
server interaction with intertwined TCP and SMTP 
protocols is shown in Fig. 2. 
 

 
 

Figure 2. Intertwined Network and Application Protocols 
 

Intertwining network and email protocols in a BMC 
email server expedites the handling of Ethernet, IP and TCP 
headers and the processing of SMTP and POP3 messages 
within a single thread of execution without interruption. 
Understanding how to intertwine protocols in this manner 
involved analysis of operational email systems using a 
Wireshark packet analyzer. Intertwining reduces the 
overhead due to typical protocol layering and context 
switching. Thus, a transaction request with data is an atomic 
transaction serviced within a single active thread of 
execution from receipt of a request until generation of a 
response. This approach also has the benefit of minimizing 
the software overhead associated with process handling in 
layered protocol approaches.  In the BMC email server, 
interactions due to TCP / SMTP protocol intertwining (Fig. 
2) are all coded within a state-diagram-driven approach 
(Fig. 1, item 14), where each state corresponds to a 
particular SMTP command, triggering the necessary SMTP 
and TCP actions.   

 

IV. DESIGN 
The design of the BMC email server avoids the use of 

any OS-based features, and creates an application which 
will run on a bare machine. The user interface for the BMC 
email server is text-based, which provides some 
configuration parameters to be specified at startup.  The 
design goal of the BMC email server was its interoperability 
with BMC email clients, conventional email clients such as 
MS-Outlook, Eudora, Mozilla, Thunderbird, Pegasus, as 
well as other email servers (for SMTP relay forwarding).  

In order to perform a proof-of-concept on the initial 
design of the email server and to ensure correct software 
functional design steps of the email operations, a Java-based 
email server was designed first.  This had a secondary 
benefit in addition to conceptual verification of protocols 
and interaction of clients and server message exchanges. 
When initially testing, the BMC email server was isolated 
on a research lab LAN environment to insure a controlled 
testing environment.  The first email server used as the 
target for SMTP message forwarding was the Java-based 
email server prototype on the research lab LAN. The Java-
based prototype provided the first “remote domain” with 
which the BMC email server communicated for SMTP 
Relay Forward testing.  Once proven to operate as designed, 
the BMC email server was connected to the campus Intranet 
and finally to the Internet for testing.    

During the design of the BMC email server, each SMTP 
and POP3 command was prototyped using State Transition 
Diagram Modeling (Fig. 1, item 14).  Each state was 
modeled to indicate SMTP and TCP message protocol 
transitions (Fig. 3) during client and server protocol 
handshaking.  A typical implementation of the HELO state 
in C++ is shown in Fig. 4. Notice that the Send-ACK and 
Send 250 illustrate the BMC email server’s ability to 
intertwine protocols.  

482



 
 

Figure 3.  Intertwined Protocol State Transition Examples 
 
 

 
 

Figure 4.  Example Source Code for Client-Server HELO Handshake 
 

The client sends HELO and the server responds by 
sending the TCP ACK and also the SMTP 250 response 
indicating its identity. Similarly, the SMTP EOM, and 
QUIT commands are intertwined with TCP operation. In 

this case, when the client sends the message EOM, the 
server responds with both the TCP ACK and the SMTP 250 
OK response.  Also, when the client sends a subsequent 
QUIT command, the server responds with both a SMTP 221 
server closing response and a TCP FINACK handshake. 
The FINACK closes the TCP/IP connection between the 
client and server.  These state diagrams exemplify the 
intertwining of SMTP and TCP protocols within the session, 
demonstrating the efficiency achieved by the design and 
implementation of a BMC Email Server. In contrast, the 
SMTP and TCP protocols in a conventional email server 
communicate through a standard socket interface and the 
protocol modules are independent, which results in a less 
efficient implementation. 

 

V. IMPLEMENTATION 
The implementation uses a standard MS-Windows 

environment, Visual C++, and the MASM Assembler for 
software development.  However, this approach does not 
include any OS-related libraries and system calls.  Instead, 
the Application Object (AO) uses direct hardware interfaces 
design for Bare PC computing [7]. Most of the direct 
hardware interfaces are implemented in assembly language 
using software interrupts. The size of this assembly code is 
approximately 1,800 lines. These direct hardware interfaces 
include display, keyboard, timers, task management, and 
real/protected mode switching.  The 3COM 905CX NIC 
driver code consists of approximately 1400 lines of 
assembly code with the rest of the code written in C. 
Similarly, the USB driver uses approximately 133 lines of 
assembly code with the rest of the code written in C.  The 
implementation of the email server architecture depicted in 
Fig. 1 is written in C++ in an object-oriented fashion.  The 
BMC server contains 31,743 lines of code including 10,000 
lines of comments, and 14,000 executable statements. The 
resulting single monolithic executable (AO) is 512 sectors 
of code (256 KB). 

The software is placed on the USB and includes: the 
boot program, startup menu, AO executable, and the 
persistent file system (used for User Profiles, emails, and 
attachments). The USB containing this information is 
generated by a tool (designed and run on MS-Windows) that 
creates the bootable BMC application for deployment. The 
tool, which generates the boot load sector, and copies the 
executable and associated files to the USB, consists of only 
469 lines of C++ code. 
 

A. Bare Machine Computing Internals 
Due to the absence of an OS in BMC applications, 

several implementation challenges must be addressed when 
designing an application. The application itself must 
manage tasking, scheduling, memory map use, interrupts, 
I/O handling, and concurrency control. For example, the AO 
programmer controls task creation, execution, and 

483



termination.  Pools of tasks are created for each required 
entity (e.g. SMTPS, POP3S, and SMTPC) during 
initialization.  In this system, up to 4000 tasks have been 
created. When a client request arrives, a given task is pulled 
from the task stack and inserted into the circular list to run.  
A completed task is returned to its stack.  Notice that the 
same task will be reused by a new request, without the need 
to recreate the task. This requires a never ending while loop 
in each task (when a task is complete, it always returns to 
the top of the while loop).  Inside the while loop, a process 
request is called which handles the complete execution of 
the request. The state transition flow of the process request 
call will only return to the task when the process is 
complete. This is a very efficient way to implement tasks 
without incurring creation and termination overhead. When 
the AO application finishes its job, all the current running 
tasks are terminated and returned to the main task, which in 
turn returns to the user menu.   

The BMC approach requires that the AO programmer 
makes scheduling decisions at coding time. Thus, when a 
program requires resources, the programmer suspends with 
a delay, and when a corresponding signal arrives for this 
task or when the delay timer expires, the task is resumed. 
The suspend mechanism uses state and control information 
stored in the TCB. The TCB mechanism allows reentrant 
code, since the task instance state, and control variables are 
stored in the TCB entry. The tasks that are waiting to be 
executed are placed in the circular list and processed in 
FIFO (first in first out) order. The main task always runs 
and controls the execution of Receive Task and other tasks 
(SMTPS, POP3S, and SMTPC). The Receive Task has 
higher priority than the other tasks.  This task mechanism 
has been shown to result in optimal performance for the 
case of a BMC Web server [4] and it is expected to be 
optimal for other servers, including the BMC email server.  

A novel approach is used for task execution in BMC 
applications.  When a task starts executing, it will use a 
single thread of execution that involves many protocol 
layers and processes.  It will return to the caller after 
completion, or suspend itself if it is unable to continue 
execution.  The CPU is continually kept busy during task 
execution. This self-controlled, self-managed technique for 
BMC task execution and scheduling has proven to be very 
efficient for Web server implementations [4].     

  

B. Storage, Interrupts, User Interfaces and Networking 
The AO programmer also manages the memory required 

for a given application. BMC memory is all real-mode, with 
persistent storage in a USB mass storage device or on the 
network. The AO programmer lays out a memory map prior 
to implementing a given application and manages both static 
and dynamic memory. The code, data, stack, and dynamic 
memory areas are pre-allocated with validation occurring at 
run-time. 

BMC interrupt handling for a process is reduced to an 
absolute minimum. Hardware timer, NIC, and keyboard 
interrupts are the only hardware interrupts allowed during a 
single thread of execution.  All other interrupts are 
implemented in software and controlled by the AO 
programmer. 

BMC I/O user interfaces (such as display, network, and 
USB) are currently text-only since graphical user interfaces 
were not essential for the networking and server 
applications developed so far.  The BMC device driver 
interfaces for standard 3COM NICs, and USB drivers for 
keyboard, mouse, and mass storage are different from 
standard OS-based drivers.  The USB interfaces can work 
with a USB hub, thus making BMC systems independent of 
motherboard connector configuration and internal I/O  
preferences. 

 

C. Development Environment Challenges 
Numerous other challenges are faced with respect to the 

development environment, debugging, and testing of BMC 
applications. Some tools have been developed to debug and 
test BMC application code.  These tools assist in monitoring 
the use of memory, memory inspection, placing debug 
messages into screen memory for display, and monitoring of 
network traffic and protocols.  These tools also provide the 
ability to use batch driven files for compilation and linking, 
boot and load programs for USB, memory dump utilities for 
memory display, trace tools, and exception and trap 
mechanisms to take control during AO execution.  

Tools freely available on the Internet including some 
from SourceForge as well as others developed in-house 
were used in the design, verification, integration, and testing 
of the BMC Email Server implementation.  Commercial 
email clients were tested for compatibility.  Also, functional 
and operational comparisons were made to other email 
servers to validate proper email server actions and 
responses.  
 

VI. FUNCTIONAL AND OPERATIONAL TESTING 
After creating the email server AO in the laboratory, it 

was functionally tested using a variety of email clients. The 
client-server interactions were captured and studied using 
Wireshark. These sessions were then analyzed and validated 
to ensure correct sequencing of SMTP and POP3 with TCP 
intertwining. 

The operational test scenario included the creation of 
hundreds of email users for the system, with enough initial 
storage for several emails per user. Each email is capable of 
carrying multiple MIME-encoded attachments. This testing 
included several interactive (human) and automated clients 
concurrently sending and retrieving email via SMTP and 
POP3, respectively, after authentication.  BMC, Java, MS-
Outlook, Mozilla Thunderbird, Eudora, Pegasus, SendMail, 
and Pine email clients were included in testing. Client 

484



machines included a mix of BMC, MS-Windows, and Linux 
based systems. The tests also included programmed “batch 
sending” of large numbers of email sends/retrievals in quick 
succession by both BMC and Java clients. These tests led to 
further enhancements of the email server to accommodate 
variations noted in Wireshark captures of client-server 
interactions related to protocol handshaking on session 
closure and the inclusion of optional application commands 
used by some commercial email clients. This resulted in a 
more robust email server that can interact with a wide 
variety of clients, and conduct SMTP relay forwarding with 
several commercial mail exchange servers.  

The functional and operational tests have shown that the 
BMC email server, with its intertwining of protocols, 
successfully implements the expected capabilities of an 
email server. It has robust handling of concurrent command-
response interactions for simultaneous email client sessions, 
is capable of SMTP relay forwarding, and provides error 
handling for sustained operations. Additional testing has 
revealed further benefits. Since the BMC email server 
executes on a machine which does not have any OS, and 
hence has no OS-based components, it is not vulnerable to 
certain types of Web-based security risks and attacks. 

 

VII. CONCLUSION 
This research has demonstrated that complex client-

server based application objects can be developed using the 
BMC environment without any host OS for execution. 
Similar to conventional servers running on OS-based 
systems, the BMC email server can support SMTP / POP3 
clients and SMTP Relay Forwarding. The Bare PC email 
server design also includes the following significant and 
novel features: USB-based persistent storage of emails, user 
validation and authentication, TCP and SMTP / POP3 
intertwining modeled as state driven action-request 
responses, a single thread of execution, and timed request-
response protocol interactions.   

Extensive testing shows that the server can interoperate 
with a variety of email clients and servers.  In addition, the 
BMC email server is immune to attacks that target 
vulnerabilities in specific OS platforms. The experience 
gained with building the BMC email server has also led us 
to explore BMC concepts and designs for VoIP, secure 
teleconferencing (voice and whiteboard), and webcam 
video-conferencing as part of on-going BMC research 
conducted at Towson University.    

 

ACKNOWLEDGMENT 
We are grateful to the late Dr. Frank Anger whose 

support of the AO (Application Object) Architecture project 

during his tenure as a director at the National Science 
Foundation resulted in the awarding of an exploratory 
research grant. This early work was the forerunner of 
dispersed operating system computing and BMC research.   

 

REFERENCES 
[1] D. R. Engler and M.F. Kaashoek, “Exterminate All Operating 

System Abstractions,” 5th Workshop on Hot Topics in 
Operating Systems, USENIX, Orcas Island, WA, May 1995, 
p. 78. 

[2] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and P. Tullman, 
“Interface and Execution Models in the Fluke Kernel,” 
Proceedings of the 3rd Symposium on Operating Systems 
Design and Implementation, USENIX Technical Program, 
New Orleans, LA, February 1999, pp. 101-115. 

[3]  B. Ford, and R. Cox, Vx32: “Lightweight User-level 
Sandboxing on the x86”, USENIX Annual Technical 
Conference, USENIX, Boston, MA, June 2008. 

[4]  L. He, R. K. Karne, and A. L. Wijesinha, “Design and 
performance of a bare PC web server,” International Journal 
of Computer and Applications., Acta Press, June 2008. 

 [5] E. Kageyama, C. Maziero, and A. Santin, “A Pull-based Email 
Architecture,” Proceedings of the 2008 ACM symposium on 
Applied Computing, ACM, Fortaleza, Ceara, Brazil, 2008, pp. 
468-472. 

[6]  R. K. Karne, K. V. Jaganathan, and T. Ahmed, “DOSC: 
Dispersed Operating System Computing”, OOPSLA ’05, 20th 
Annual ACM Conference on Object Oriented Programming, 
Systems, Languages, and Applications, Onward Track, ACM, 
San Diego, CA, October 2005, pp. 55-61. 

[7] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to Run 
C++ Applications on a Bare PC”, SNPD 2005, Proceedings of 
SNPD 2005, 6th ACIS International Conference, IEEE, May 
2005, pp. 50-55.  

[8] R. K. Karne, “Application-Oriented Object Architecture: A 
Revolutionary Approach,” 6th International Conference, HPC 
Asia 2002, Centre for Development of Advanced Computing, 
Bangalore, Karnataka, India, December 2002.  

 [9] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He, and S. 
Girumala, “A Peer-to-Peer Bare PC VoIP Application,” 
Proceedings of the IEEE Consumer and Communications and 
Networking Conference, IEEE Press, Las Vegas, Nevada, 
January 2007.  

[10] A. Pathak, S. Roy, and Y. Hu, “A Case for a Spam-Aware 
Mail Server Architecture,” 4th Conference on Email and 
Anti-Spam (CEAS) 2007, Microsoft Corporation, Mountain 
View, CA, August 2007. 

[11] “Tiny OS,” Tiny OS Open Technology Alliance, University 
of California, Berkeley, CA, 2004,       http://www.tinyos.net/ 

[12] T. Venton, M. Miller, R. Kalla, and A. Blanchard, “A Linux-
based tool for hardware bring up, Linux development, and 
manufacturing,” IBM Systems Journal., Vol. 44 (2), IBM 
Corporation,  NY, 2005, pp. 319-330. 

[13] “The OS kit project,” School of Computing, University of     
Utah, Salt Lake, UT, June 2002, 
http://www.cs.utah.edu/flux/oskit    

 

485


