
Variables, Expressions
and Selection Control

1

In computing, a symbol is a set of one or
more characters that represents something
else.

For example, your name (all the letters
together) is a symbol that represents you
as an individual.

2

Symbols

A literal value is a symbol that “stands for
itself.” Thus,

1 is a symbol that represents the number one

10 is a symbol that represents the number ten

Literal values that represent numbers are called
numeric literals (numeric values).

3

Literal Values

Numeric values can be integer values:
1 10 1024

or they can be floating-point (real) values:

1.0 1.20 10.245 1024.03525674

4

Numeric Literals

Numeric values can be used in calculations.
Such calculations are called arithmetic
expressions.

In order to perform such calculations, a set of
arithmetic operators is needed.

5

Arithmetic Expressions

Typical arithmetic operators in
programming languages include:

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

6

Typical Arithmetic Operators

2 + 4

2 * 4

(2 + 4) * 3

(2 + 4) * (6 – 3)

etc.

Note that if we don’t use parentheses, e.g., 2 + 4 * 3,
then it is not clear whether the addition or the
multiplication is done first.

7

Examples of Arithmetic
Expressions

In programming, we often want to compare
values. For example,

10 < 20 is true (less than operator)

The relational operators are,

< (less than), > (greater than)

==(equal to), != (not equal to)

<= (less than or equal to)

>= (greater than or equal to)

8

Relational Operators

We can create larger true/false expressions
by use of Boolean (logical) operators,

and

or

not

9

Boolean Operators

(10 < 20) and (30 > 50) this expr is false

(10 < 20) or (30 > 50) this expr is true

10 < 20 is true

not (10 < 20) is false

10

Example Use of Boolean
Operators

Variables are indispensible in programming.

A variable is a symbol that stands for some literal
value.

In programming, symbols that stand for something
else are called identifiers.

11

Variables

Identifiers can include letters and digits, but must not
start with a digit, for example,

sum valid
totalSales2011 valid
2011TotalSales invalid

The above style is called camel case, in which each
word is capitalized, except for the first letter. The
underscore is a special character that is often allowed,
for example,

total_sales_2011

12

Identifiers

n = 10 (we say that n “holds” the value 10)

k = 5

n + 20  30

n + k  15

n = n + 1 (if n is initially 10, it will become 11)

13

Example Variable Use

n = 10 (we say that n “holds” the value 10)

n + 20  30 OK
n + k  15 INVALID – variable k not

assigned a value

So what if we wanted to add up values, the result
stored in variable sum.

n = n + 1 (if n is initially 10, it will become 11)

14

Initializing Variables

sum = sum + 10

sum = sum + 20

sum = sum + 30

What is the final value in sum?

15

Initializing Variables (cont.)

The answer is, we can’t know. The reason is that
we don’t know what the initial value of sum may
be,

sum = sum + 10

sum = sum + 20

sum = sum + 30

If sum had an initial value of 0, the answer would
be 60. But what if its initial value were 5? 10? etc.

16

Initializing Variables (cont.)

This example demonstrates why it is important to
initialize variables if they are going to be used before
they have been assigned,

sum = 0 initialization

sum = sum + 10 without the initialization, variable

sum would be used here containing
some unknown value

sum = sum + 20

sum = sum + 30

Now we can be guaranteed to get the right result (60).

17

Initializing Variables (cont.)

Three forms of control:

• Sequence

• Selection

• Repetition (iteration)

Sequence control is when instructions are
executed in the order that they are listed.

18

Control

Selection control is used to select among two or
more set of instructions to execute, based on
given conditions.

A condition is any true/false (Boolean)
expression.

19

Selection Control

“If it is raining outside, then I will take my
umbrella. Otherwise, I will not take it.”

In programming, we would structure this
statement as,

if raining today
take umbrella

else
don’t take umbrella

20

Example Selection Control

Selection control is not only used to select among
two sets of instructions, but is also used to either
do or not do a single set of instructions,

if raining today

take umbrella

In this case, the “else” section is omitted.

21

Selection Control with no Else

Selection control instructions can be chained, e.g.,

if grade on exam is >= 90
grade is an A

else
if grade on exam is >= 80

grade is a B
else
if grade on exam is >= 70

grade is a C
else
if grade on exam is >= 60

grade is a D
else

grade is an F This called the “catch all” case.
The catch-all case is optional.

22

Chained Selection Control

Selection control instructions can be nested, e.g.,

if grade on exam is >= 90
if grade >= 97

grade is A+
else
if grade >= 93

grade is A
else
if grade >= 90

grade is an A-
else
if grade on exam is >= 80

if grade >= 87
grade is B+

etc.

23

Nested Selection Control

