
Computational Problem
Solving

1

In computational problem solving, a
representation is needed of the relevant
aspects of a given problem to solve.

The means of solving the problem is based
on algorithms that operate within the
given representation.

A representation that leaves out details is a
form of abstraction.

2

Thus, computational problem solving
fundamentally involves the development
and use of “executable abstractions.”

A computer program is an executable
abstraction. It consists of both a
representation of a problem, and
implementation of the needed algorithms.

3

A road map is an abstraction since it does
not denote every aspect of the terrain.
However, it does represent what is needed
to be able to:

 Find out how to get somewhere

 Find the direct distance between two
points (by use of the map scale)

4

5

Google maps use a representation of
roadways, and an algorithm for
determining the best routes of travel from
one location to another.

6

7

What is an algorithm?

An algorithm is a step-by-step method
for solving a certain type of problem, such
as sorting a list. All algorithms eventually
terminate and give a solution to a
particular problem instance.

EVERYDAY EXAMPLE: Cookbook recipe

8

A Cookbook Recipe is an Algorithm

9

Ingredients the
Data

Instructions

Photoshop: A Bundle of
Algorithms

Photoshop is a good example of the use of
algorithms.

The program is essentially a collection
algorithms that can affect a digital image in
ways that used to be done physically, for
example:

• Adjust the colors
• Adjust the contrast
• Special effects

10

11

Example Algorithms

 Instructions for putting together furniture

 Instructions on lid of a washing machine

 Instructions for performing a magic trick

 Euclid’s Algorithm

Euclid’s Algorithm

Euclid’s Algorithm for Finding the Greatest Common
Divisor of Two Numbers

Step 1: Assign M the value of the larger of the
two input values.

Step 2: Divide M by N, can call the remainder R.

Step 3: If R is not 0, then assign M the value of N,
assign N the value of R, and go to step 3;
otherwise, the greatest common divisor is N.

The Fundamental Components of
an Algorithm

Algorithms contain only a few types of

fundamental instructions, that in combination,
can be used to compute everything that can be
computed.

What CAN be computed is a very fundamental

question in computer science.

14

Three Fundamental Forms of
Control

• Sequential

Instructions executed in order

• Selection
Which instructions executed based a condition

• Repetition (iteration / loops)
A set of instructions repeatedly executed while a
given condition is true

With these three forms of control, can
compute anything that can be computed

Algorithms and Computers:
A Perfect Match

Computers have the property of being
able execute a series of instructions
reliably and very quickly.

If we can figure an algorithm to solve a
given type of problem, then all instances
of that problem can be automatically
solved by computers.

16

Basic Program Steps

17

• Input of values

• Variables to store values in

• Use of variables in calculations

• Control of order of instructions executed

• Output of results

Farhenheit to Celsius Example

18

print ‘Convert Celsius to Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, ‘degrees Fahrenheit‘

Program Output

Degrees Celsius to degrees Fahrenheit

Enter degrees Celsius: 100

212.0 degrees Fahrenheit

Variables Used

19

print ‘Convert Celsius to Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, ‘degrees Fahrenheit‘

Variables on left side of = means ASSIGNMENT

Variables anywhere else means USE of its

current value.

Variable Assignment

The instruction,

n = 10

Does not mean that n equals 10, but rather that
the value 10 is assigned to variable n.

n  10

20

Variable Use

When a variable appears within an expression, its
CURRENT VALUE is used.

In the following, the expression on the right of the
assignment is first evaluated, and then the result
assigned as the NEW value of n:

n = 10

n = n + 1

Result is that variable n will hold the value 11.

21

Program Output (Greeting)

22

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

Print fahrenheit, 'degrees Fahrenheit'

Program Input (Celsius)

23

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

Variable Assignment (celsius)

24

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

Expression Evaluation

NOTE: * is the symbol for multiplication in
most programming languages

25

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

Variable Assignment (fahrenheit)

26

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print celsius, 'degrees Celsius equals',

fahrenheit, 'degrees Fahrenheit'

Program Output (Celsius)

27

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')

fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

