

In computational problem solving, a
representation is needed of the relevant
aspects of a given problem to solve.

The means of solving the problem is based
on algorithms that operate within the
given representation.

A representation that leaves out details is a
form of abstraction.

Thus, computational problem solving
fundamentally involves the development
and use of "executable abstractions.”

A computer program is an executable
abstraction. It consists of both a
representation of a problem, and
implementation of the needed algorithms.

A road map is an abstraction since it does
not denote every aspect of the terrain.

However, it does represent what is needed
to be able to:

Find out how to get somewhere

Find the direct distance between two
points (by use of the map scale)

& o

\ =i Ty &
Pikewjlle | #e 0 & ‘//4; ot
) 7 0B Sale > L :
vill Haza “\u_/ ; R k L . (il
Some 7 Pufaski Zrzas . Urg
5) r o = Virginia Beach
) - - X = sapeske
an ' . - apea
jdlegboro risto g Vierign ingvill ik el oo C”A -
Sp Ea : o 2= | 9 (Fapids \Elj it
: g ﬁ% e BApi Elizabeth City
5o it N = ers i je Sofnd
k Righje Bopn ston-$a “fh reensbarol s S AR €
. e -~ m cky/ Moup A7 3 Martog
. i i
noir | O . ;
- : o e < S TTERAS
arille 5 Wilso! lle i 3y CAPE BB
e X i~ S I eequille| \wag Q‘:Q /> 1| NATIONAL SEASHORE
£ ’ 7
s 0 = O i
4 T PAR Gagtori 6@ bermarle /Jsan Sb,?\r 2! ’\' o
4 8 2, i Ny \\
Q i harlot - kmﬁp/
— atant\r 1 (Fakettevillef [~
Easle eentill Rogk — Lauringyrg atksonville ehead City
W A i \//5“"" /CAPE LOOKOUT
. i e enn Lumbérten NATIONAL SEASHORE
Gain | 85 2 =
rtwe
: 7 (25) ~ ilming
P W00 Blghsne \
hens . &
lanta YBI N Lafje Cif 4 \
— o i Myrtle Beach (g
Covin 2 K\
ffin A e
|
5 Milledgevillg {2Ynagbor (&) >
co llendald— > 2
A o : :
n obin SylMagias \x £ ‘l‘?Char‘esmn
o DOk Be: e\
G Statesborg) 70
I | dalia)
clige avann
Co
itZger; P

Google maps use a representation of
roadways, and an algorithm for
determining the best routes of travel from
one location to another.

Liberty

Reserv"é!ﬁ&é

s&wmle -. '— B
4.) ﬁmRmdallstown’

Patapeco Vallev& Mitford Mill -

.l-n»‘

What is an algorithm?

An algorithm is a step-by-step method
for solving a certain type of problem, such
as sorting a list. All algorithms eventually
terminate and give a solution to a
particular problem instance.

EVERYDAY EXAMPLE: Cookbook recipe

Rover's Rewards

3/4 Cup hot water or meat juices]
I/Sml?margarine 2 Ingredients the

1/2 cup

powdered milk Data

1/2 teaspoon salt (optional)
1 egg, beaten
3 cups whole wheat flour Tnstructions

&
2.
3.
4,
5.
6.
7.
8.

In large bowl pour hot water over margarine,

Stir in powdered milk, salt, and beaten egg.

Add flour, 1/2 cup at a time, mixing well after each addition.

Knead 3 to 4 minutes, adding more flour if necessary to
make a very stiff dough.

Pat or roll to 1/2 inch thickness and cut out with CHEF
FIDO Dog Biscuit Cutter.

Place on a greased baking sheet and bake at 325" for 50
minutes.

Allow to cool and dry out until hard.

Makes approximately 11/4 pounds.

Photoshop: A Bundle of
Algorithms

Photoshop is a good example of the use of
algorithms.

The program is essentially a collection
algorithms that can affect a digital image in
ways that used to be done physically, for
example:

® Adjust the colors
® Adjust the contrast
® Special effects

3D EFFECTS WITH PHOTOSHOP

Example Algorithms

Instructions for putting together furniture
Instructions on lid of a washing machine
Instructions for performing a magic trick
Euclid’s Algorithm

Euclid’s Algorithm

Euclid’s Algorithm for Finding the Greatest Common
Divisor of Two Numbers

Step 1: Assign M the value of the larger of the
two input values.

Step 2: Divide M by N, can call the remainder R.
Step 3: If Ris not O, then assign M the value of N,

assign N the value of R, and go to step 3;
otherwise, the greatest common divisor is N.

The Fundamental Components of
an Algorithm

Algorithms contain only a few types of
fundamental instructions, that in combination,

can be used to compute everything that can be
computed.

What CAN be computed is a very fundamental
question in computer science.

Three Fundamental Forms of
Control

» Sequential
Instructions executed in order

» Selection
Which instructions executed based a condition

» Repetition (iteration / loops)
A set of instructions repeatedly executed while a
given condition is true

With these three forms of control, can
compute anything that can be computed

Algorithms and Computers:
A Perfect Match

Computers have the property of being
able execute a series of instructions
reliably and very quickly.

If we can figure an algorithm to solve a
given type of problem, then all instances
of that problem can be automatically
solved by computers.

Basic Program Steps

Input of values

Variables to store values in

Use of variables in calculations

Control of order of instructions executed

Output of results

Farhenheit to Celsius Example

print ‘Convert Celsius to Fahrenheit'

celsius = 1input ('Enter degrees Celsius:

fahrenheit = (9.0/5.0 * celsius) + 32
print fahrenheit, ‘degrees Fahrenheit®

Program Output

Degrees Celsius to degrees Fahrenheit
Enter degrees Celsius: 100

212.0 degrees Fahrenheit

Variables Used

print ‘Convert Celsius to Fahrenheit'
celsius = 1nput ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32
print fahrenheit, ‘degrees Fahrenheit®

Variables on left side of = means ASSIGNMENT

Variables anywhere else means USE of its
current value.

Variable Assignment
The instruction,
n = 10

Does not mean that n equals 10, but rather that
the value 10 is assigned to variable n.

n €< 10

Variable Use

When a variable appears within an expression, its
CURRENT VALUE is used.

In the following, the expression on the right of the

assignment is first evaluated, and then the result
assigned as the NEW value of n:

= 10
=1 1+ 1

Result is that variable n will hold the value 11.

Program Output (Greeting)

Temperature Conversion (Celsius-Fahrenheit)

print ‘Degrees Celsius to degrees Fahrenheit'

celsius = 1nput ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

Print fahrenheit, 'degrees Fahrenheit'

Program Input (Celsius)

Temperature Conversion (Celsius-Fahrenheit)
print ‘Degrees Celsius to degrees Fahrenheit'

celsius = input('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

Variable Assignment (celsius)

Temperature Conversion (Celsius-Fahrenheit)
print ‘Degrees Celsius to degrees Fahrenheit'

celsius = 1input ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

Expression Evaluation

Temperature Conversion (Celsius-Fahrenheit)
print ‘Degrees Celsius to degrees Fahrenheit'

celsius = 1nput ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

NOTE: * is the symbol for multiplication in
most programming languages

Variable Assignment (fahrenheit)

Temperature Conversion (Celsius-Fahrenheit)
print ‘Degrees Celsius to degrees Fahrenheit'

celsius = 1nput ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

print celsius, 'degrees Celsius equals',
fahrenheit, 'degrees Fahrenheit'

Program Output (Celsius)

Temperature Conversion (Celsius-Fahrenheit)
print ‘Degrees Celsius to degrees Fahrenheit'

celsius = 1nput ('Enter degrees Celsius: ')
fahrenheit = (9.0/5.0 * celsius) + 32

print fahrenheit, 'degrees Fahrenheit'

